MCMC for Generalized Linear Mixed Models with glmmBUGS
نویسنده
چکیده
The glmmBUGS package is a bridging tool between Generalized Linear Mixed Models (GLMMs) in R and the BUGS language. It provides a simple way of performing Bayesian inference using Markov Chain Monte Carlo (MCMC) methods, taking a model formula and data frame in R and writing a BUGS model file, data file, and initial values files. Functions are provided to reformat and summarize the BUGS results. A key aim of the package is to provide files and objects that can be modified prior to calling BUGS, giving users a platform for customizing and extending the models to accommodate a wide variety of analyses.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملGeneral Design Bayesian Generalized Linear Mixed Models
Linear mixed models are able to handle an extraordinary range of complications in regression-type analyses. Their most common use is to account for within-subject correlation in longitudinal data analysis. They are also the standard vehicle for smoothing spatial count data. However, when treated in full generality, mixed models can also handle spline-type smoothing and closely approximate krigi...
متن کاملComparison of Different Estimation Methods for Linear Mixed Models and Generalized Linear Mixed Models
Linear mixed models (LMM) and generalized linear mixed models (GLMM) are widely used in regression analyses. With the variance structure dependent on the random effects with their variance components, the parameter estimation of LMMs is more complicated than linear models (LM). Generally, we use maximum likelihood estimation (MLE) together with some procedure such as derivative free optimizatio...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملAsymptotic normality of posterior distributions for generalized linear mixed models
Generalized linear mixed models (GLMMs) are widely used in the analysis of non Gaussian repeated measurements such as clustered proportion and count data. The most commonly used approach for inference in these models is based on the Bayesian methods and Markov chain Monte Carlo (MCMC) sampling. However, the validity of Bayesian inferences can be seriously affected by the assumed model for the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010